

Climate-KIC

Step by step guidelines on how to use the

"Baseline Emissions Inventory"

For Reducing Enterprise-Level GHG Emissions at least 8% by 2030

TABLE OF CONTENTS

LIS	T OF TABLES	3
LIS	T OF BOXES	3
LIS	T OF FIGURES	4
IN	TRODUCTION	5
Вι	JSINESS4CLIMATE STEP BY STEP	6
ID	ENTIFY: BASELINE EMISSIONS INVENTORY	7
	Getting Started	7
	Template Content	9
	Save your progress	10
FII	LLING IN THE TEMPLATE	.11
	Section 1 – Intro	11
	Section 2 – Activity Data	13
	Agriculture	13
	Mining and quarrying	13
	Manufacturing	14
	Electricity, gas, steam and air conditioning supply	14
	Water supply; sewerage, waste management and remediation activities	14
	Construction	15
	Services	15
	Section 3 – Energy	16
	Section 4 – F-Gases	22
	Section 5 – Waste	27
	Section 6 – Agriculture	32
	Section 7 – Report	. 33

LIST OF TABLES

Table 1 Content of Baseline Emissions Inventory	9
Table 2 Description of categories included in Energy	
Table 3 Fuel used in Energy	17
Table 4 Conversion Factors from Cyprus Legislation KDP 438/2015	19
Table 5 Conversion Factors from OECD/IEA Energy Statistics Manual and 2006 IPCC Guidelines	20
Table 6 Conversion Equivalents between Units of Mass	20
Table 7 Conversion Equivalents between Units of Energy	21
Table 8 Basic Multiples Prefixes	21
Table 9 Air Conditioning and Refrigeration sub-sectors description	2 3

LIST OF BOXES

Box 1 Access Baseline Emissions Inventory Tool	
Box 2 Access NACE codes	
Box 3 Access KDP 438/2015	
Box 4 Access Retail Fuel Prices Observatory	
Box 5 Fuel consumption calculation example	
Box 6 Access F-Gas Calculator	
Box 7 Access Zero Waste Scotland Report	

LIST OF FIGURES

Figure 1 Business4Climate Step by Step	6
Figure 2 Baseline Emissions Inventory Tool	8
Figure 3 General diagram of Baseline Emissions Reporting Process	8
Figure 4 Warning error - Checking System I	10
Figure 5 Checking System II	10
Figure 6 Save your progress	11
Figure 7 Restore your progress	11
Figure 8 Intro I	11
Figure 9 Intro II	12
Figure 10 Activity Data - Agriculture	13
Figure 11 Activity Data - Manufacturing	14
Figure 12 Activity Data - Water supply I	15
Figure 13 Activity Data - Water supply II	15
Figure 14 Activity Data – Services	16
Figure 15 Energy	16
Figure 16 F-Gases I	23
Figure 17 F-Gases II	26
Figure 18 F-Gases III	26
Figure 19 Waste – Solid Waste Disposal	28
Figure 20 Commercial waste composition	29
Figure 21 Waste – Industrial Wastewater Treatment I	30
Figure 22 Waste – Industrial Wastewater Treatment II	31
Figure 23 Agriculture I	32
Figure 24 Agriculture II	32
Figure 25 Agriculture III	33

INTRODUCTION

The Cyprus Employers and Industrialists Federation (OEB), the Cyprus University of Technology (project coordinator) and the Department of Environment of the Ministry of Agriculture, Rural Development and Environment, participate in the project **Business4Climate**. The project aims to develop an initiative, the "Business4Climate", which aims at committing businesses to be more actively involved in climate action by reducing their greenhouse gas (GHG) emissions by at least 8% until 2030.

The project also aims to provide Cypriot businesses from all economic sectors that do not participate in the European Emissions Trading System (EU-ETS), the necessary tools and methods for identifying greenhouse gas emissions that derive from their activities and to help them to prepare a customized action plan targeting the reduction of their emissions.

Project activities include the development of a methodology for the identification of baseline GHG emissions at business level, the capacity building of businesses on climate action measures and identification of available and future financing schemes of GHG reduction-related projects in Cyprus. The project is funded by the Climate-KIC through the European Institute of Innovation and Technology (EIT).

A main task of each enterprise signing the Business4Climate Declaration is to report their GHG emissions, by preparing their Baseline Emissions Inventory (BEI). Reporting is carried out through an online tool that was developed in the framework of implementation of Business4Climate project, and is suitable for any business regardless the economic sector. The GHG emissions are being calculated on the basis of data provided by the enterprises for the baseline year 2017. Activity data that will be requested from enterprises are related to energy consumption, use of fluorinated gases (F-gases), agriculture and waste.

This document provides guidance to enterprises for preparing their BEI.

BUSINESS4CLIMATE STEP BY STEP

- Go to the Business4Climate website: http://www.oeb.org.cy/drasis/business4climate/
- 2. Print and Sign the "Business4Climate" Voluntary Commitment and become a member of the Energy Efficiency Network as well.
- 3. Report the baseline greenhouse gas emissions of your business for 2017, by using the online tool that is available on line and has being provided by the Monitoring Team.
- 4. Prepare your business' action plan for GHG emissions reduction by 2030.
- 5. Report the practices, business policies, measures and actions you will implement for the reduction of greenhouse gas emissions in the template that is being provided by the Monitoring Team.
- 6. The monitoring team will provide support to your business through the online tools for SMEs that are available on line http://www.oeb.org.cy/drasis/business4climate-plus/ but also through direct contact.

Identify baseline GHG emissions for 2017

Take action

Implement the actions and measures, proposed in your action plan

Sign the Voluntary Commitment "Business4Climate"

Make an action plan for 2030 to reduce energy and natural resources consumption

Monitor and evaluate progress in cooperation with the project's team

Figure 1 Business4Climate Step by Step

Getting Started

In order to identify the baseline GHG emissions for the enterprises, a systematic methodology was developed. The outcome is a user-friendly tool that is available online on the official website of OEB: http://www.oeb.org.cy/drasis/business4climate/. By clicking on the blue box

ΕΚΘΕΣΗ ΑΝΑΦΟΡΑΣ ΕΚΠΟΜΠΩΝ

BASELINE EMISSIONS INVENTORY

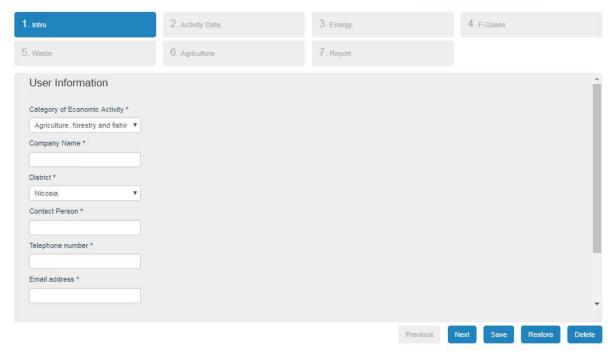
you will enter the Baseline Emissions Inventory on line reporting tool.

In this emission inventory report, you will report data concerning your final energy consumption, your refrigeration and air conditioning equipment and your waste.

How to easily access Baseline Emissions Inventory Tool?

Click on http://business4climate.oeb.org.cy/

Box 1 Access Baseline Emissions Inventory Tool



Business4Climate

Figure 2 Baseline Emissions Inventory Tool

Figure 3 outlines the basic steps to complete the BEI. The template includes seven different sections; 1. Intro, 2. Activity Data, 3. Energy, 4. F-Gases, 5. Waste, 6. Agriculture and 7. Report. Depending on the category of economic activity of your enterprise, the appropriate sections will be activated. Each part requires specific actual data of the enterprises for the year 2017. Signatories can complete the template by filling in the necessary activity data in all sections. Before submitting the report, a download option will be available.

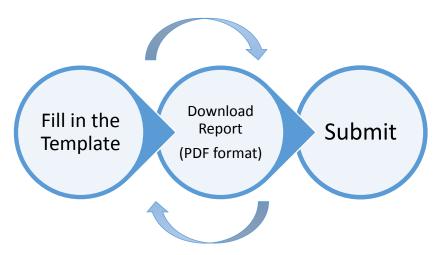


Figure 3 General diagram of Baseline Emissions Reporting Process

Template Content

The Business4Climate online tool for BEI, to be used by all the signatories of the Business4Climate Declaration, includes the following parts as presented in Table 1.

Table 1 Content of Baseline Emissions Inventory

1	Intro	General information and main category of economic activity		
		5		
2	Activity Data	General activity data		
3	Energy	Energy consumption related data by category and fuel (fuel		
		consumption)		
4	F-Gases	Refrigeration and air conditioning related data by category (gases		
		charge, number of units)		
5	Waste	Solid waste disposal related data (number of employees etc., % of		
		waste recycled)		
		Industrial wastewater treatment related data (total production,		
		management)		
6	Agriculture	Manure management related data (population of animals, type of		
		treatment)		
7	Report	Detailed results of the amount of GHG emissions produced by		
		sector and generation of the report		
		sector and generation of the report		

For the successful completion of the template, all mandatory input cells must be filled in (are marked by *). If any data-related issue is identified by the checking system, you will receive the corresponding notification while completing the online tool (Figures 4 and 5). **IMPORTANT: Always check the units in which the requested data must be entered.**

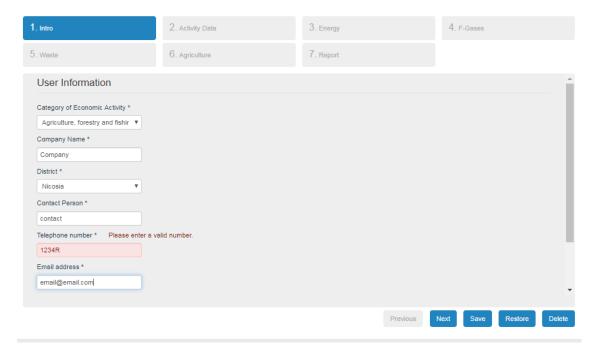


Figure 4 Warning error - Checking System I

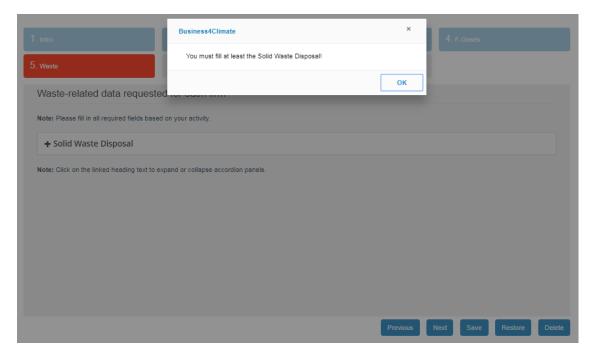


Figure 5 Checking System II

Save your progress

In order to save your progress and continue with the completion of the BEI later on, select the 'Save' button in the bottom right corner of the tool, as shown in Figure 6.

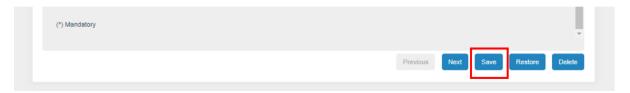


Figure 6 Save your progress

To access the data you saved, just click the 'Restore' button in the bottom right corner of the tool (Figure 7).

Figure 7 Restore your progress

FILLING IN THE TEMPLATE

Section 1 – Intro

Section 1 refers to the general information of the enterprise, such as company name and contact details. The first step requires the user to set the main Category of Economic Activity of your enterprise (Figure 8). By scrolling down the first input cell, seven options appear; Agriculture, forestry and fishing; Mining and quarrying; Manufacturing; Electricity gas, steam and air conditioning supply; Water supply, sewage, waste management and remediation activities; Construction; and Services.

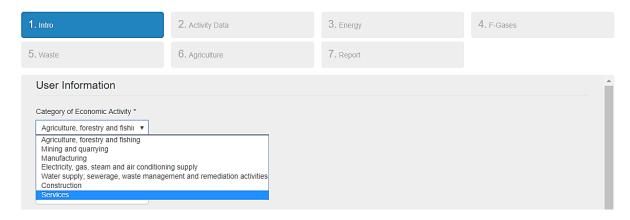


Figure 8 Intro I

Those represent the main economic categories based on the statistical classification of economic activities in the European Community (NACE). NACE is the acronym used to designate the various statistical classifications of economic activities developed since 1970 in the European Union.

With the following link you can access the list of NACE codes.

How to access the list of NACE codes?

Click on http://ec.europa.eu/competition/mergers/cases/index/nace all.html

Box 2 Access NACE codes

IMPORTANT: Please enter the main economic activity of your business

After selecting the most appropriate main Category of Economic Activity, please fill the following cells; **Company Name, Contact Person, Telephone number** and **Email address** as shown in Figure 9. Concerning the **District** cell, you can choose the area where your enterprise is located by scrolling down.

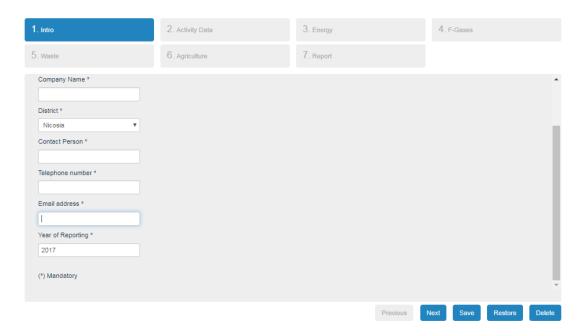


Figure 9 Intro II

The **Year of Reporting** refers to the baseline year. The baseline year, in the online tool, is pre-filled. All the following data are requested for the year 2017.

To move to Section 2, click Next at the bottom right.

Depending on the economic activity of the enterprise, different Sections will be activated. Firms from all economic activities must fill in Sections 2, 3, 4 and 5. Agriculture activities should be additionally completed in Section 6.

Section 2 – Activity Data

Based on the selection of the main of economic activity different **Activity Data** will be requested always depending on the main economic activity.

Agriculture

Moving on to Section 2 a list of different animals will appear. At this point the population of animals for the year 2017 should be entered. By clicking on the linked heading text you can expand or collapse accordion panels (Figure 10).

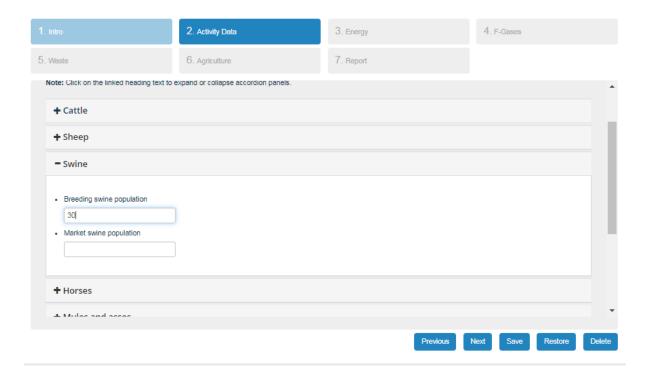


Figure 10 Activity Data - Agriculture

Mining and quarrying

Here you state the total production of your activities in tonnes for the year 2017.

Manufacturing

Based on your selection, a list of manufacturing sub-categories appears. Choose the appropriate sub-category and enter the total production of your products in tonnes (Figure 11). By clicking on the linked heading text you can expand or collapse accordion panels.

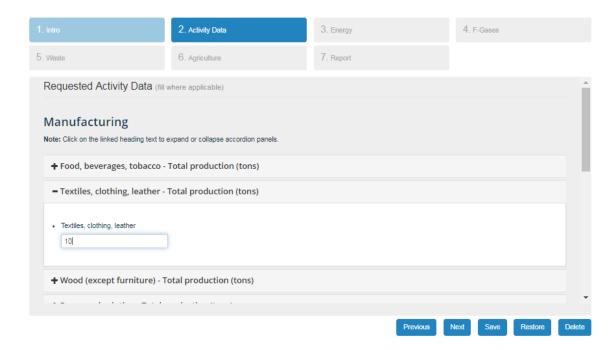


Figure 11 Activity Data - Manufacturing

Electricity, gas, steam and air conditioning supply

If your firm's main activity is power generation, state here the electricity production in megawatt-hours (MWh).

Water supply; sewerage, waste management and remediation activities

If your enterprise is active in Water Supply, please verify here the amount of water supplied to consumers in tonnes. As concerns Solid Waste Disposal, state the city, the population served and the percentage amount of waste recycled. Finally, in the Domestic Wastewater Treatment option, please denote the population you are serving.



Figure 12 Activity Data - Water supply I

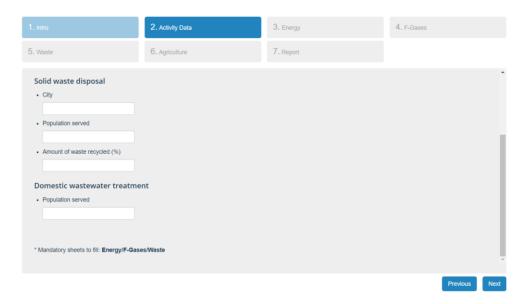


Figure 13 Activity Data - Water supply II

Construction

Click the respective box.

Services

If your firm belongs to the tertiary sector and you selected Services, a list of sub-categories appears. By clicking on the appropriate linked heating text accordion panels expand. Please insert here the appropriate activity data as requested for each sub-category. For example, for hotels and hotel apartments the number of rooms is required (Figure 14).

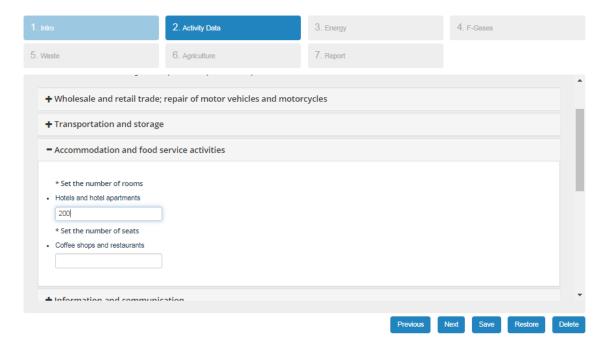


Figure 14 Activity Data - Services

Section 3 – Energy

In this section, you should report energy consumption data. The data requested is related with **Energy Consumption in Buildings**, the **Energy Consumption in Processes/machinery** and finally the **Energy Consumption in Transport**. In order to add the data in each category, click on the appropriate linked heading text to expand accordion panels.

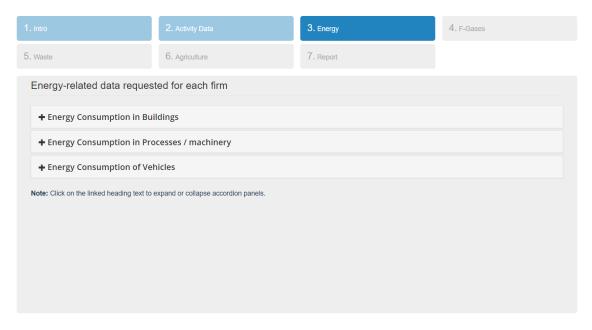


Figure 15 Energy

Table 2 provides a description of the categories of "Energy" that needed to be considered in the Energy section.

Table 2 Description of categories included in Energy

Sectors	Description
Buildings	Emissions from fuel combustion in firms' buildings and facilities
	(electricity, heating/cooling)
Processes/machinery	Emissions generated from fuel combustion in industrial processes
	(if applicable)
Transport	All combustion and evaporative emissions arising from fuel use in
	vehicles owned and used by the firm

The fuels used in each category and the respective units are presented in Table 3. Enter data of energy consumption that is applicable to your enterprise: the consumption of each fuel in tonnes, the consumption for heating from solar water heaters, geothermal and other renewables in megawatt-hours (MWh), and the electricity consumption in megawatt-hours (MWh) (second column of Table 3).

Table 3 Fuel used in Energy

Energy Consumption in Buildings	Units
Gasoil	tons
LPG	tons
Fuel oil	tons
Biofuels	tons
Wood	tons
Other biomass	tons
Heat (from solar water heaters)	MWh
Heat (geothermal)	MWh
Electricity (from grid)	MWh
Electricity (from solar PV)	MWh
Energy Consumption in Processes/machinery	
Gasoil	tons
LPG	tons
Fuel oil	tons
Biofuels	tons
Wood	tons

Other biomass	tons	
Heat (from solar water heaters)	MWh	
Other heat from renewables	MWh	
Electricity (from grid)	MWh	
Electricity (from solar PV)	MWh	
Energy Consumption of Vehicles		
Gasoline	tons	
Gasoline Diesel	tons tons	
Diesel	tons	
Diesel LPG	tons tons	
Diesel LPG Biofuels	tons tons tons	

Gas/diesel oil is primarily a medium distillate distilling between 180°C and 380°C. Several grades are available depending on uses:

- Transport diesel: on road diesel oil for diesel compression ignition (cars, trucks, etc.), usually of low sulphur content.
- Heating and other gas oil: Light heating oil for industrial and commercial uses, marine diesel and diesel used in rail traffic, other gas oil including heavy gas oils which distil between 380°C and 540°C and which are used as petrochemical feedstocks.

Liquefied petroleum gases (LPG) are light paraffinic hydrocarbons derived from the refinery processes, crude oil stabilisation and natural gas processing plants. They consist mainly of propane and butane or a combination of the two. They could also include propylene, butylene, isobutene and isobutylene.

Fuel oil covers all residual (heavy) fuel oils (including those obtained by blending). It is split into two categories:

- Low sulphur content: heavy fuel oil with sulphur content lower than 1%.
- High sulphur content: heavy fuel oil with sulphur content of 1% or higher.

Biofuels covers bioethanol, biodiesel, biomethanol, biodimethylether and biooil. Liquid biofuels are mainly biodiesel and bioethanol/ETBE used as transport fuels. They can be made from new or used vegetable oils and may be blended with or replace petroleum-based fuels. The natural plant feedstock includes soya, sunflower and oil seed rape oils. Under some circumstances, used vegetable oils may also be used as feedstock for the process.

Motor gasoline consists of a mixture of light hydrocarbons distilling between 35°C and 215°C. It is used as a fuel for land-based spark ignition engines. Motor gasoline can be divided into two groups:

- Unleaded motor gasoline: motor gasoline where lead compounds have not been added to enhance octane rating. It may contain traces of organic lead.
- Leaded motor gasoline: motor gasoline with TEL (tetraethyl lead) and/or TML (tetramethyl lead) added to enhance octane rating. This category includes motor gasoline blending components.

Wood is combusted directly for energy. Other solid biomass includes plant matter used directly as fuel that is not already included in wood/wood waste. Included are vegetal waste, animal materials/wastes and other solid biomass. This category includes non-wood inputs to charcoal production but all other feedstocks for production of biofuels should be excluded.

You can obtain information about the **energy content of various fuels** from the Cypriot legislation KDP 438/2015 (Table 4).

How to access the KDP 438/2015?

Click on http://www.cylaw.org/KDP/data/2015 1 438.pdf

Box 3 Access KDP 438/2015

Table 4 Conversion Factors from Cyprus Legislation KDP 438/2015

Fuel	kJ	kWh
1 kg Gasoil	42300	11,750
1 kg LPG	46000	12,778
1 kg Fuel Oil	40000	11,111
1 kg Wood	13800	3,833
1 kg Gasoline	44000	12,222
1 kg Diesel	42300	11,750

In the following Table you will find the necessary conversion factors, retrieved from OECD/IEA/Eurostat Energy Statistics Manual 2005 and 2006 IPCC Guidelines for National Greenhouse Gas Inventories, to express the energy consumption data of your firm to the appropriate units.

Table 5 Conversion Factors from OECD/IEA Energy Statistics Manual and 2006 IPCC Guidelines

Sector	Conversion Factor (kg/m³)	Conversion Factor (lt/tons)	Net Calorific Value (GJ/tons)
Energy Consumption in Buildings	(0,)	, ,	. , ,
Gasoil	843,9	1185	43,38
LPG	522,2	1915	46,15
Fuel oil	925,1	1081	42,18
Biofuels	-	-	27,0
Wood	-	-	15,6
Other biomass	-	-	11,6
Energy Consumption in Processes/machinery			
Gasoil	843,9	1185	43,38
LPG	522,2	1915	46,15
Fuel oil	925,1	1081	42,18
Biofuels	-		27,0
Wood	-	-	15,6
Other biomass	-	-	11,6
Energy Consumption of Vehicles			
Gasoline	740,7	1350	44,75
Diesel	843,9	1185	43,38
LPG	522,2	1915	46,15
Biofuels	-	-	27,0

How to access the OECD/IEA/Eurostat Energy Statistics Manual, 2005?

Click on: https://www.iea.org/publications/freepublications/publication/statistics manual.pdf

The main conversions between units of mass and energy are presented in the following Tables 6 & 7. Table 8 gives the most common multiple prefixes used in energy statistics.

Table 6 Conversion Equivalents between Units of Mass

	TO: kg	tons	
FROM:	Multiply by:	Multiply by:	
Kilogramme (kg)	1	0,001	
Tonnes (tons)	1000	1	

Table 7 Conversion Equivalents between Units of Energy

TC): GJ	MWh	
FROM:	Multiply by:	Multiply by:	
Gigajoule (GJ)	1	0,2778	
Megawatt-hours (MWh)	3,6	1	

Table 8 Basic Multiples Prefixes

Multiple

10³ kilo (k)

10⁶ mega (M)

10⁹ giga (G)

10¹² tera (T)

If fuel consumption data are not available, you can convert the corresponding total fuel costs into usage of fuel with the aid of Retail Fuel Prices Observatory developed by the Consumer Protection Service of the Ministry of Energy, Commerce and Industry.

How to access the Retail Fuel Prices Observatory?

Click on: https://mobile.eservices.cyprus.gov.cy/mcit ccpr/PBL MCIT PetroleumPrices

Box 4 Access Retail Fuel Prices Observatory

In case that the total cost of a fuel is known you can easily convert it into fuel consumption if you know the cost of fuel in Euro/litre.

 $Total\ Cost = Fuel\ Consumption \cdot Fuel\ Cost$

$$Fuel\ Consumption = \frac{Total\ Cost}{Fuel\ Cost}$$

Where

Total Cost Total annual cost of fuel [Euro]

Fuel Consumption Annual fuel consumption [It]

Fuel Cost Fuel cost [Euro/lt]

For example:

- Total Cost of Gasoline is 200 Euro
- Fuel cost of gasoline is 0,887 Euro/Lt (retrieved from Retail Fuel Prices
 Observatory)

With the aid of the previous equation:

Gasoline Consumption =
$$\frac{200 \, Euro}{0,887 \, \frac{Euro}{Lt}} = 225,5 \, Lt$$

Box 5 Fuel consumption calculation example

To move on to Section 4, by clicking Next at the bottom right of the screen frame.

Section 4 – F-Gases

This section is divided into two main parts:

- Air Conditioning in which you should report data considering Stationary and Mobile Air Conditioning;
- Refrigeration in which you should report data considering Commercial Refrigeration, Industrial Processes and Transport Refrigeration.

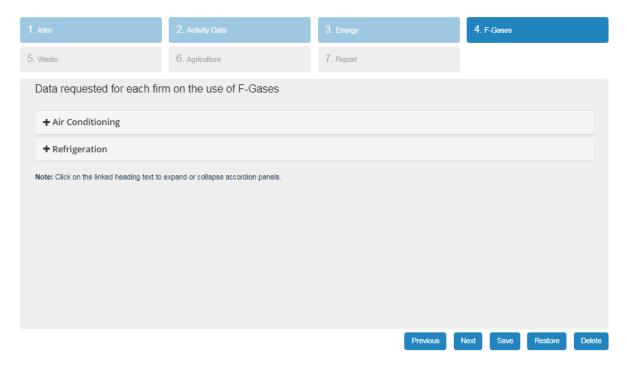


Figure 16 F-Gases I

Each category is further split into sub-categories. The following Table (Table 9) includes description and typical refrigerant charge and cooling duty for each one of them.

Table 9 Air Conditioning and Refrigeration sub-sectors description

Air Conditioning						
Stationary Air Conditioning						
Small Split Air-Conditioning	Units used for the cooling of single rooms in					
	commercial buildings. Each system consists of					
	two, an indoor unit and an outdoor unit. It is					
	usually located at ceiling level or high on a wall,					
	although some models are designed for floor					
	level mounting.					
	Typical refrigerant charge: 0.5 to 3 kg					
	Typical cooling duty: 2 to 12 kW					
Large Single Splits and Multi-Splits Air-	Very similar in concept to small single splits.					
Conditioning	Large single splits are simply a larger version of					
	a small split, consisting of a single indoor unit					
	and outdoor unit. Multi-splits may have several					
	indoor units connected to a single outdoor					
	unit.					
	Typical refrigerant charge: 3 to 10 kg					

	Typical cooling duty: 10 to 40 kW					
VRF systems	Sophisticated multi-split systems where several					
	outdoor units can support many indoor units					
	(up to 64). Some of these systems are designed					
	to be able to provide simultaneous heating and					
	cooling to different parts of the same building.					
	Typical refrigerant charge: 5 to 100 kg					
	Typical cooling duty: 12 to 150 kW					
Ducted and Packaged Rooftop	Units that provide cooling to buildings via a					
	ducted air ventilation system.					
	Typical refrigerant charge: 5 to 100 kg					
	Typical cooling: 12 to 200 kW					
Water Chillers	This market sector includes water chillers that					
	are used for building air-conditioning and some					
	industrial cooling applications. Many large					
	buildings that require air-conditioning are					
	cooled using pumped chilled water systems					
	with a central chiller installation.					
	Small/medium sized chillers					
	Typical refrigerant charge: 40 to 500 kg					
	Typical cooling duty: 50 to 750 kW					
	<u>Large chillers</u>					
	Typical refrigerant charge: 500 to 13 000 kg					
	Typical cooling duty: 750 to 10 000 kW					
Mobile Air Conditioning						
Cars and Small Vans	Systems used to cool the driver and passengers					
	in land transport including cars, vans.					
	Typical refrigerant charge: 0.4 to 0.8 kg					
	Typical cooling duty: 3 to 5 kW					
Larger Vehicles	Systems used to cool the driver and passengers					
	in land transport buses, agricultural vehicles					
	and trains.					
	Typical refrigerant charge: 2 to 20 kg					
	Typical cooling duty: 10 to 30 kW					
Refrigeration						
Commercial Refrigeration						
Stand Alone	Small systems using technology with					
	similarities to domestic refrigerators.					
	Typical refrigerant charge: 0.1 to 0.5 kg					
	Typical cooling duty: 0.1 to 1 kW					
Condensing Unit	"Split systems" with a cooling evaporator in the					

	refrigerated chase connected to a remetaly					
	refrigerated space connected to a remotely					
	located compressor and condenser.					
	Typical refrigerant: 1 to 10 kg					
	Typical cooling duty: 2 to 20 kW					
Centralised	Large distributed systems with a number of					
	cooling evaporators connected to a remotely					
	located compressor pack and external					
	condenser.					
	Typical refrigerant charge: 20 to 200 kg					
	Typical cooling duty: 40 to 200 kW					
<u>Industrial Processes</u>						
Small & Medium Sized Systems	Usually dedicated to one particular cooling					
	demand. These systems are often located close					
	to the cooling demand.					
	Typical refrigerant charge: 10 to 100 kg					
	Typical cooling duty: 20 to 100 kW					
Chiller Systems	A primary refrigerant is used in a chiller to cool					
	a secondary heat transfer fluid which is					
	circulated to a number of separate cooling					
	demands.					
	Typical refrigerant charge: 100 to 2000 kg					
	Typical cooling duty: 200 to 5000 kW					
Large Distributed Systems	These systems are used to cool large loads in					
	processes such as blast freezers, process heat					
	exchangers and cold storage facilities. A					
	primary refrigerant is piped from a central					
	machinery room to a number of evaporators					
	serving one or more cooling demands. The					
	primary refrigerant is often circulated over					
	significant distances.					
	Typical refrigerant charge: 250 to 5000 kg					
	Typical cooling duty: 100 to 5000 kW					
<u>Transport Refrigeration</u>	71, 11 11 11 11 11 11 11 11 11 11 11 11 1					
Road vehicles (vans, trucks, trailers)	This market sector includes refrigeration					
	systems used in various modes of transport.					
	Most transport refrigeration systems are used					
	for the carriage of frozen or chilled food and					
	beverage products.					
	Typical refrigerant charge: 1 to 8 kg					
	Typical cooling duty: 3 to 10 kW					
	i voicai cooiiiig duty. 3 to 10 KVV					

By clicking on the plus symbol, you can add any Gases in any sub-category. The first step requires you to choose the **Gas** used in the matching equipment and then state the initial **Charge** in kilograms (kg). That information can be provided by the construction company for the corresponding model. For your convenience you can group the systems with the same Gas and Charge. By doing that, you must fill the **Number of Units** cell with the appropriate number. Furthermore, you must state the **Installation Year** of each unit you grouped.

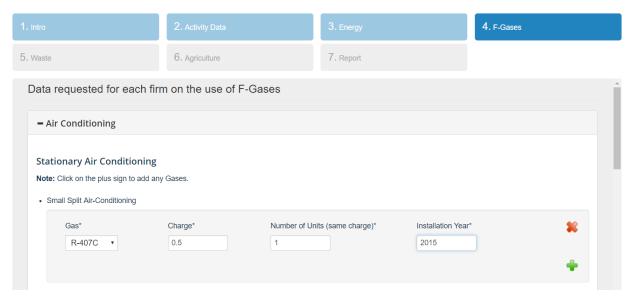


Figure 17 F-Gases II

You can delete any entry by clicking on the ★ sign and add any additional entry using the + sign (Figure 18).

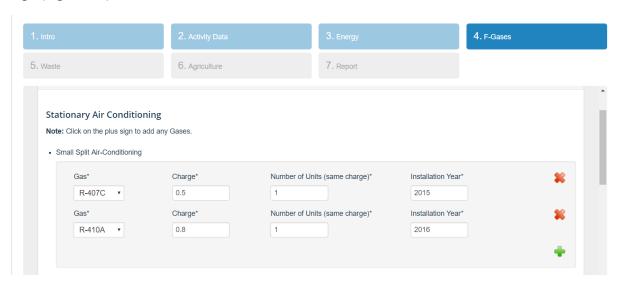


Figure 18 F-Gases III

A free F-Gas calculator tool has been developed by the European Commission. The values found in the corresponding excel workbook show kilogrammes of refrigerant charge for various threshold levels expressed in tonnes of CO₂ equivalent in the European Union F-Gas Regulation.

How to access the F-Gas Calculator?

Click on: https://ec.europa.eu/clima/sites/clima/files/f-gas/docs/f-gas_tool.xls

Box 6 Access F-Gas Calculator

To move on to Section 5, click Next at the bottom right.

Section 5 - Waste

This section is divided into two parts:

- **Solid Waste Disposal** in which you should report data considering municipal solid waste generation.
- Industrial Wastewater Treatment in which you should report wastewater treatment related data.

In this section you must fill in all required fields based on your activity. All signatories must fill **Solid Waste Disposal**. Firms that belong to specific categories of the Manufacturing Sector (production of Alcohol, Beer, Soft drinks, Dairy products, Meat and poultry, Refinery, Soaps and detergents, Vegetable oils, Vegetables, Fruits and juices and Wine) must complete additionally the **Industrial Wastewater Treatment**.

Solid Waste Disposal

Regarding Solid Waste Disposal, please state the city in which your firm is located. The data requested in the second cell will be retrieved automatically from Section 1 - Activity Data. Finally, declare the recycling rate.

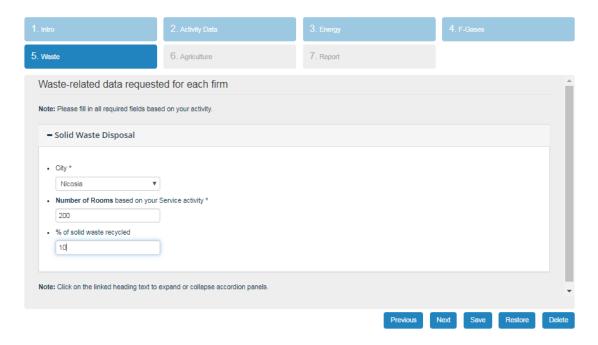


Figure 19 Waste – Solid Waste Disposal

If the percentage of solid waste that is recycled by your firm is not available, the following Figure 18 can help you calculate the required percentage. It includes the composition (in weight %) of residual trade waste produced by eight business categories, retrieved from the first detailed national-level study into the composition of municipal waste in Scotland from Zero Waste Scotland in April 2010 (Table 10, pg 25).

	Retail	Food	Care	Hair & Beauty	Health	Leisure	Offices	Manufacturing	Other businesses
Newspapers & magazines	9.4	1.4	3.4	16.3	8.0	3.3	11.3	2.4	8.7
Other paper	15.6	9.6	14.7	9.1	31.0	16.7	28.8	28.1	18.5
Cardboard	29.3	7.9	6.8	6.9	14.2	13.4	9.7	14.7	15.9
Plastic film	11.6	7.1	7.4	6.3	6.8	7.6	5.4	11.1	5.0
Plastic bottles	2.2	3.9	1.9	6.2	2.8	6.3	6.1	2.5	3.0
Other plastic packaging	3.1	4.3	3.5	6.5	4.9	4.7	4.1	6.6	2.7
Other dense plastic	2.4	0.2	0.5	0.3	0.7	1.4	0.7	0.9	1.4
Textiles & footwear	1.1	0.4	1.0	0.5	0.6	1.8	0.2	6.2	1.3
Wood	0.1	0.1	0.8	0.1	0.1	0.5	0.0	0.1	0.0
Furniture	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Disposable nappies	0.1	1.3	4.5	2.7	0.2	0.6	0.4	0.0	0.3
Other Combustibles	1.2	1.8	2.4	12.9	6.3	3.5	1.9	3.0	2.7
Packaging glass	1.1	6.1	3.2	4.1	0.9	8.6	2.1	0.6	8.1
Other glass	0.6	0.1	0.0	0.1	0.0	0.7	0.0	1.3	0.6
Rubble (C&D waste)	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0	0.4
Other non-combustibles	0.1	0.0	0.2	0.0	1.6	0.9	0.2	1.1	1.1
Metal cans	1.3	4.0	2.2	3.4	1.4	3.7	2.0	1.8	4.5
Other metal	3.0	0.4	0.6	4.1	0.3	1.4	1.6	1.7	3.8
Food/kitchen waste	12.5	48.4	42.7	14.2	11.1	17.9	18.2	7.7	11.7
Garden waste	3.4	0.0	2.1	0.0	0.5	1.6	0.0	8.0	4.0
Other organics	0.8	1.2	1.1	5.1	2.4	2.7	3.6	0.8	3.4
HHW	0.1	0.0	0.0	0.1	0.1	0.3	0.4	0.2	0.0
WEEE	0.1	0.0	0.0	0.0	0.8	0.2	2.2	0.0	1.4
Fines	1.0	1.7	0.8	1.0	2.3	2.1	1.1	1.2	1.5
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Figure 20 Commercial waste composition

How to access the Zero Waste Scotland Report?

Click on: http://www.wrap.org.uk/sites/files/wrap/Scotland MSW report final.pdf

Box 7 Access Zero Waste Scotland Report

Industrial Wastewater Treatment

Based on your economic activity (production of Alcohol, Beer, Soft drinks, Dairy products, Meat and poultry, Refinery, Soaps and detergents, Vegetable oils, Vegetables, Fruits and juices and Wine) must complete additionally the **Industrial Wastewater Treatment**., data regarding the **Industrial Wastewater Treatment** may need to be filled. The production data are already retrieved from Section 1 - Activity Data. At this point you should add information about the waste treatment method.

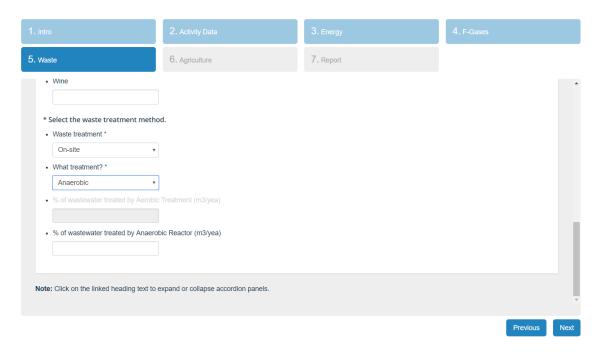


Figure 21 Waste – Industrial Wastewater Treatment I

First, select if the industrial wastewater is treated on-site or at a centralised treatment plant (Waste treatment cell) and the type of treatment applied (What treatment? cell). Finally, state the percentage of wastewater treated by each treatment type in cubic metres for the year 2017.

For example, if the wastewater is treated on-site with a combination of Aerobic and Anaerobic Treatment, both cells regarding the percentage (%) of wastewater treated will be activated (Figure 22).

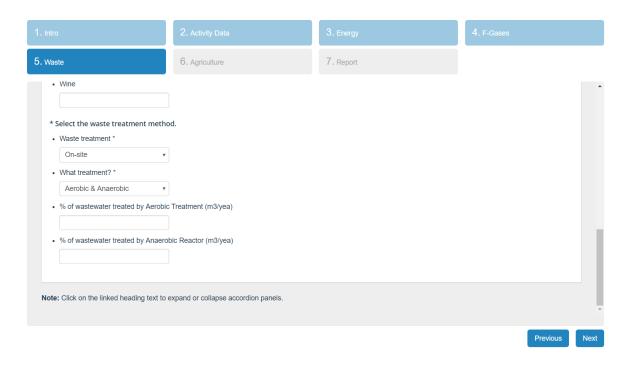


Figure 22 Waste - Industrial Wastewater Treatment II

As soon as you complete the different parts, you can proceed to the final step. At this point you have successfully completed the template for the Baseline Emissions Inventory. You can access the results by clicking Next at the bottom right.

If you belong in the Agriculture Sector, you will have to complete additionally the Section 6 – Agriculture.

Section 6 – Agriculture

This section requires information about Manure Management.

Click on the plus sign to add your data. Here select the type of animal from the list that is available on **Animal Selection** cell (Figure 23) and state the **Animal Population**. Finally, select the **Waste Management** method that is applied (Figure 24).

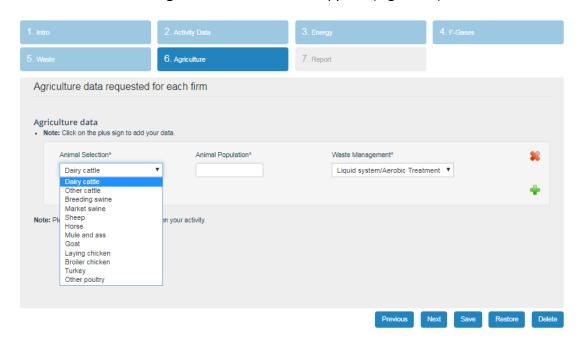


Figure 23 Agriculture I

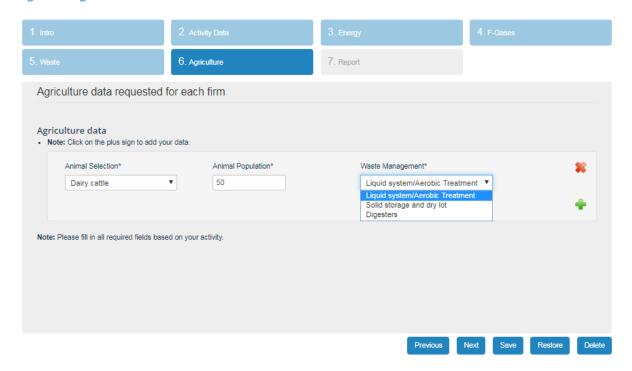


Figure 24 Agriculture II

You can delete any entry by clicking on the ★ sign and add a new entry using the + sign (Figure 25).

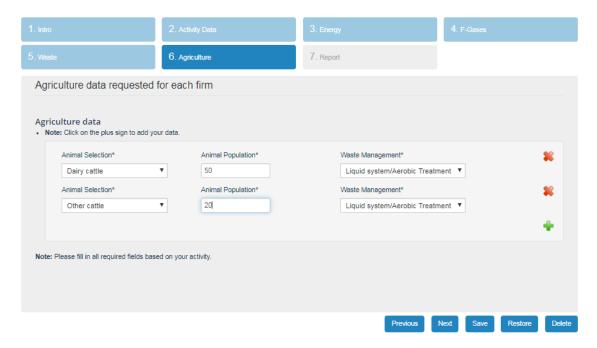


Figure 25 Agriculture III

Section 7 – Report

The **Report** is generated at the end of the completion of the BEI online tool. Detailed results are presented for each sector (Energy Consumption, F-Gases, Waste and Agriculture) and its sub-categories. The **Total GHG emissions** for the year 2017 are also calculated. All emissions are expressed in tones of CO_2 equivalent.

Before proceeding to the final online submission, you have the option to **Download** the Report in PDF format. To submit the **Report** you must click **Submit** at the bottom right.

